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The inverse problem of designing component interactions to tar-
get emergent structure is fundamental to numerous applications
in biotechnology, materials science, and statistical physics. Equally
important is the inverse problem of designing emergent kinet-
ics, but this has received considerably less attention. Using recent
advances in automatic differentiation, we show how kinetic path-
ways can be precisely designed by directly differentiating through
statistical physics models, namely free energy calculations and
molecular dynamics simulations. We consider two systems that
are crucial to our understanding of structural self-assembly: bulk
crystallization and small nanoclusters. In each case, we are able
to assemble precise dynamical features. Using gradient informa-
tion, we manipulate interactions among constituent particles to
tune the rate at which these systems yield specific structures of
interest. Moreover, we use this approach to learn nontrivial fea-
tures about the high-dimensional design space, allowing us to
accurately predict when multiple kinetic features can be simul-
taneously and independently controlled. These results provide
a concrete and generalizable foundation for studying nonstruc-
tural self-assembly, including kinetic properties as well as other
complex emergent properties, in a vast array of systems.

self-assembly | colloids | inverse design

K inetic features are a critical component of a wide range
of biological and material functions. The complexity seen

in biology could not be achieved without control over intri-
cate dynamic features. Viral capsids are rarely infectious if they
assemble too quickly (1), protein folding requires deft navigation
and control of kinetic traps (2), and crystal growth is largely con-
trolled by the relative rates of different nucleation events (3).
However, the design space of kinetic features remains largely
unexplored. Self-assembly traditionally focuses on tuning struc-
tural properties, and while there have been significant successes
in developing complex structural features (4–9), there has been
little exploration of dynamical features in the same realm. We
demonstrate quantitative control over assembly rates and tran-
sition rates in canonical soft matter systems. In doing so, we
begin to explore the vast design space of dynamical materials
properties.

To intelligently explore the design space of dynamical fea-
tures, we rely on recent advances in automatic differentiation
(AD) (10–14), a technique for efficiently computing exact deriva-
tives of complicated functions automatically, along with advances
in efficient and powerful implementations of AD algorithms
(15–17) on sophisticated hardware such as GPUs (graphical pro-
cessing units) and TPUs (tensor processing units). While the
development of these software packages is driven by the machine
learning community, a distinct, nondata-driven approach is
emerging that combines AD with traditional scientific simu-
lations. Rather than training a model using preexisting data,
AD connects observables to physical parameters by directly
accessing physical models. This enables intelligent navigation
of high-dimensional phase spaces. Initial examples utilizing this
approach include optimizing the dispersion of photonic crystal
waveguides (18), the invention of new coarse-grained algorithms

for solving nonlinear partial differential equations (19), the dis-
covery of molecules for drug development (20), and greatly
improved predictions of protein structure (21).

Here, we begin to explore a class of complex inverse design
problems that traditionally has been hard to access. Using AD to
train well-established statistical physics-based models, we design
materials for dynamic, rather than structural, features. We also
use AD to gain theoretical insights into this design space, allow-
ing us to predict the extent of designability of different proper-
ties. AD is an essential component of this approach (22) because
we rely on gradients to connect physical parameters to com-
plex emergent behavior. While there are other approaches for
obtaining gradient information (e.g., finite difference approxima-
tions), AD calculates exact derivatives and more importantly, can
efficiently handle large numbers of parameters. Furthermore,
the theoretical insights we develop rely on accurate calculations
of the Hessian matrix of second derivatives, for which finite
difference approaches are insufficient.

We start in Tuning Assembly Rates of Honeycomb Crystals by
considering the bulk crystallization of identical particles into
both honeycomb and triangular lattices. By differentiating over
entire molecular dynamics (MD) trajectories with respect to
interaction parameters, we are able to tune their relative crystal-
lization rates. We proceed with a more experimentally relevant
example in Tuning Transition Rates in Colloidal Clusters, where
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we consider small colloidal nanoclusters that can transition
between structural states. By optimizing over the transition bar-
riers, we obtain precise control over the transition dynamics.
Together, Tuning Assembly Rates of Honeycomb Crystals and
Tuning Transition Rates in Colloidal Clusters demonstrate that
kinetic features can be designed in classic self-assembly systems
while maintaining the constraint of specific structural motifs.
The use of AD provides a way to directly access the design
space of kinetic features by connecting emergent dynamics with
model parameters. This connection reveals insight into the
high-dimensional design landscape, enabling us to make accu-
rate predictions in Simultaneous Training of Multiple Transitions
regarding when large numbers of kinetic features of the colloidal
clusters can be controlled simultaneously. Finally, we conclude in
Discussion with an analysis of both the specific and broad impact
of these results.

Tuning Assembly Rates of Honeycomb Crystals
We start with the classic self-assembly problem introduced by
Rechtsman et al. (23, 24) of assembling a honeycomb lattice
out of identical isotropic particles. The honeycomb lattice is a
two-dimensional analog of the diamond lattice, which exhibits
desirable mechanical and photonic properties, but its low density
makes assembling such a crystal a particularly difficult prob-
lem. Nevertheless, Rechtsman et al. (23) successfully designed
a honeycomb lattice using a potential of the form

U (r) =
b0

r12
− a0

r10
+ a1e

−a2r − b1e
−b2(r−a3)2 . [1]

They fixed the parameters b0 = 5, b1 = 0.4, and b2 = 40 and opti-
mized a0, a1, a2, and a3 using simulated annealing (23, 24)
at zero temperature. We optimize the same set of four free
parameters. However, we optimize via AD rather than simulated
annealing and work toward a different goal: tuning the rate of
assembly at finite temperature while still enforcing the structural
constraint that a honeycomb lattice is assembled.

We consider a system of N = 100 particles that interact via Eq.
1 and evolve under overdamped Langevin dynamics at constant
temperature (SI Appendix). The blue curve in Fig. 1 shows the
assembly dynamics for a specific set of parameters. Specifically,
it shows a “honeycomb loss function,” LH, that measures the
onset of crystallization by identifying the most “honeycomb-like”
region, which is a leading indicator of bulk crystallization (SI
Appendix). LH≈ 1 for a randomly arranged system and decreases
to LH = 0 for a perfect honeycomb lattice. Going forward, we will
define the crystallization rate kH≡ 1/tH, where tH is the time
at which LH drops below 0.5 (indicated by the blue diamond
in Fig. 1).

The parameters in Fig. 1 were not chosen randomly but are
the results of an initial optimization procedure. The starting
parameter values input into the optimization procedure match
the starting parameters of Rechtsman et al. (23, 24) and do not
yield a honeycomb lattice structure on the timescale we consider.
To perform the optimization, as explained in SI Appendix, we
use AD to calculate the gradient of LH after 3,300 simulation
time steps. With the gradient in hand, we iteratively minimize
LH using a standard optimization procedure. Although not tar-
geting a dynamical rate, these results are our first example of
AD-based optimization over an MD simulation. Note that this is
slightly different than the aim of Rechtsman et al. (23, 24), who
were focused on the zero-temperature ground state, and not sur-
prisingly, their results (gray curve in Fig. 1) are not optimal for
finite time, finite temperature assembly.

While the system forms a honeycomb lattice at low-volume
fractions, the same system with the same interaction parameters
will assemble into a triangular lattice at higher-volume frac-
tions. The “triangular loss function,” LT, shown in red in Fig. 1

Fig. 1. Assembly process for honeycomb and triangular lattices. Two dif-
ferent loss functions are pictured: a honeycomb loss and a triangular loss.
The honeycomb loss is shown in blue for the parameters found using AD
and in gray for the parameters found by Rechtsman et al. (24), whereas
the triangular loss is shown in red. The two corresponding potentials are
shown in SI Appendix. Each curve is averaged over 200 independent simula-
tions, while the triangular lattice simulations are performed under a higher
density than the honeycomb lattice simulations. The three images on the
right-hand side are representative examples of the assembled lattice struc-
tures. The bottom two images use the same set of parameters as found using
AD but have different volume fractions. The image in the upper left shows a
sample random initial configuration. In order to extract assembly rates, we
note the time at which the lattices are half-assembled, demarcated with a
diamond.

can similarly be used to define a second crystallization rate kT.
These rates are measured relative to intrinsic timescales that are
nontrivially coupled to the potential. To regularize the intrinsic
timescale, we seek to control kH relative to kT.

We use AD over simulations of the assembly process to opti-
mize for our desired assembly dynamics. To understand how we
perform this optimization, consider the function

SMD (a,R, ρ, t), [2]

which runs an MD simulation for t simulation steps at
density ρ, starting from an initial set of positions R,
and with interactions given by Eq. 1 with parameters a =
{a0, a1, a2, a3}. The function returns the final set of positions
Rt after t simulation time steps. Using this notation, Fig. 1
shows LH(t)≡LH

(
SMD

(
a,R0, 2

3
ρT, t

))
in blue and LT(t)≡

LT (SMD (a,R0, ρT, t))in red, where LH,T(R) are functions that
return the respective loss function for a set of positions over time.

The calculation of LH(t) [or LT(t)] is analogous to a simple
feed-forward neural network with t hidden layers corresponding
to each time step and where LH is applied to the last hidden
layer to obtain the output. However, rather than using a set
of variable weights and biases to move from one layer to the
next, we use the discretized equations of motion to integrate
the dynamics. Furthermore, the variables that we train over, a ,
are physical parameters (i.e., that define the interaction poten-
tial) rather than the millions of weights and biases that typically
comprise a neural network. By using AD to propagate the gra-
dient of, for example, LH(t) through each simulation step to
obtain d

da
LH(t), we are able to train a stochastic MD simulation

in a way similar to standard neural networks. Importantly, how-
ever, this is a data-free approach with “baked-in physics” where
results are not only interpretable but correspond to physical
parameters.

We now seek to find parameters, a , such that the rate of assem-
bly of the honeycomb lattice at density ρH is k∗H and the rate
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of assembly of the hexagonal lattice at density ρT is k∗T . This is
equivalent to minimizing the squared loss, L= (LT (t∗T )− 1

2
)2 +

(LH (t∗H )− 1
2
)2. The gradient dL

da
, which involves differentiating

over two ensembles of MD simulations, is used in conjunction
with the RMSProp (25) stochastic optimization algorithm to
minimize L. Fig. 2 shows the results of this procedure, where we
have fixed k∗T = 0.01 and varied k∗H. While the ratio kH/kT is not
identical to the target ratio, we have obtained nontrivial control
over the rates using only four parameters.

These results were generated using “forward-mode” AD, in
which memory usage is independent of the length of the simula-
tion but computation time scales with the number of parameters.
Forward-mode AD quickly becomes extremely time intensive
for more complex systems. A more scalable approach is to
use “reverse-mode” AD, where the computation time scales
favorably with the number of parameters. In the reverse-mode
formulation, however, the entire simulation trajectory must be
stored in memory, which severely limits the size and length of the
simulation. While techniques such as gradient rematerialization
(26) can be used to mitigate this, we have developed an alter-
native strategy (SI Appendix) where only the last 300 time steps
are differentiated over (Fig. 2, Inset). This method provides a
more robust solution for large-scale optimization and is similar
in spirit to truncated backpropagation used in language modeling
(27) and metalearning (28).

Tuning Transition Rates in Colloidal Clusters
We now turn to another ubiquitous dynamical feature in physical
and biological systems. Spontaneous transitions between distinct
structural configurations are crucially important in many natu-
ral processes from protein folding to allosteric regulation and
transmembrane transport, and the rates of these transitions are
critical for their respective function. While the prediction of
transition rates from energy landscapes is well studied (29, 30),
there have been few attempts to control transition rates. This is
largely because a general understanding of how changes to inter-
actions affect emergent rates is lacking. Such an understanding,
as well as the inverse problem of computing energy landscapes
for a specific rate, is essential both for understanding biophys-
ical functionality and for exploring feature space in physical
systems.

Fig. 2. Ratio of assembly rates as a function of target ratio. Using forward-
mode AD, we obtain nontrivial control over assembly rates (black line
indicates perfect agreement). Inset shows the results using backward-mode
AD (SI Appendix). The backward-mode results are achieved by adjusting
a tuning parameter 1/τ̃H. By changing 1/τ̃H, we obtain indirect control
over the assembly rates by differentiating over only the final 300 simula-
tion steps. Although less precise, this approach is more scalable to systems
with many parameters.

In this section, we focus on a simple system that exhibits
such transitions and can be realized experimentally. Clusters of
micrometer-scale colloidal particles are ideal model materials
both theoretically and in the laboratory. Furthermore, advances
in DNA nanotechnology (31–33) have enabled precise control
over binding energies between specified particles by coating the
colloids with specific DNA strands. As demonstrated by Hormoz
and Brenner (34) and Zeravcic et al. (35) and confirmed experi-
mentally by Collins (36), such control over the binding energies
allows for high-yield assembly of specific clusters under ther-
mal noise. The assembly of one stable cluster over the others is
obtained by choosing the binding energies Bαβ between particle
pairs (α,β) so that the target structure is the ground state. While
there is significant interest in avoiding kinetic traps in order to
maximize yield (37), there have been few attempts to control
persistent kinetic features of these systems.

We aim to control the rate of transitioning between distinct
states. We do this in two ways: first, by simultaneously tuning
the energy of the connecting saddle point and the state energies
themselves and second, by directly tuning the Kramers approx-
imation for the transition rates, which also takes the curvature
of the energy landscape into account. We then consider the
question of how many different kinetic features can be tuned
simultaneously. To address this, we develop a constraint-based
theory analogous to rigidity percolation that predicts when simul-
taneous control is possible and reveals insight into the nature of
the design landscape.

For concreteness going forward, we consider clusters of N = 7
spheres that interact via a short-ranged Morse potential with
binding energy Bαβ and with dynamics given by the overdamped
Langevin equation with friction coefficient γ (SI Appendix). For
positive Bαβ , Arkus et al. (38) identified all possible stable states
up to permutations, each with 15 stabilizing contacts and no
internal floppy modes. From these, we pick states that are sepa-
rated by only a single energy barrier and use the 1

2
N (N − 1) = 21

different Bαβ as adjustable parameters to control the transition
kinetics.

The transition rate from state i to state j is

kij = νij e
−β∆Eit , [3]

where ∆Eit is the energy barrier, and β≡ (kBT )−1 with kB
as the Boltzmann constant and T as the temperature. νij is
a nontrivial prefactor that we can approximate using Kramers
theory (29, 30):

νij =
ωb

2πγ

∏
` ω

A
`∏

`′ ω
S
`′

, [4]

where ωb and {ωS
`′} are the frequencies of the unstable and sta-

ble vibrational modes, respectively, at the saddle point and {ωA
` }

are the frequencies at state i . We will demonstrate control over
the transition kinetics in two ways: 1) by controlling the forward
and backward energy barriers ∆Eit and ∆Ejt and 2) by control-
ling directly the forward and backward transition rates kij and kji
using the Kramers approximation.

In order to proceed, we first have to find the transition state
separating states i and j . This is done using the doubly nudged
elastic band (DNEB) method (39), which is illustrated in Fig. 3A
and described in SI Appendix. The transition state, along with the
initial and final states, allows us to calculate the energy barriers
as well as the vibrational frequencies necessary for Eq. 4.

With this in hand, we next compute a loss function, L. When
targeting the energy barriers, we use

L= (∆Eit −∆E∗it)
2 +
(
∆Ejt −∆E∗jt

)2, [5]
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Fig. 3. (A) Illustration of the DNEB method (39) for finding the transition state between two local energy minima, which in our case, corresponds to
metastable seven-particle clusters. Given such an energy landscape, we construct a series of nI = 100 images that span the two minima and are connected
by high-dimensional springs. Keeping the two end points fixed to the minima, the energy of the ensemble is minimized collectively. The resulting nI

images give the steepest descent path from one minimum to the other, traversing the saddle point. Thus, the image with the largest energy approximates
the saddle point, or transition state, and we can use the image number as a one-dimensional representation of the steepest descent path, or reaction
coordinate. However, note that the spacing between images is not imposed, and so, the image number is not a direct measure of distance. SI Appendix
has more details. (B) Energy (in kBT) along the steepest descent path after successive iterations of the optimization algorithm. For clarity, the minimum
energy along the path is subtracted. Note that the regions of constant energy at the beginning and end of the path correspond to global rotations of the
cluster. (C) Verification of the transition rates via MD simulation. Periodic snapshots from MD simulations are mapped to the steepest descent path found
through the DNEB calculation (gray). Noise is reduced using a Butterworth low-pass filter (black) and then binarized (blue). The dashed line represents the
threshold for binarizing the signal and corresponds to the image with the highest energy (i.e., Rt). Transition rates are calculated from the dwell times of the
binarized signal.

where ∆E∗it and ∆E∗jt are the desired energy barriers. When
targeting the transition rates directly, we use

L=
(
kij − k∗ij

)2 +
(
kji − k∗ji

)2, [6]

where kij and kji are the Kramers rates and k∗ij and k∗ji are the tar-
gets. Finally, we optimize L using reverse-mode AD to calculate
the 21 derivatives dL

dBαβ

∣∣∣
Ri ,Rj ,Rt

, where Ri,j ,t are the positions

of the particles in the respective states. This gradient is fed into
a standard optimization algorithm [RMSProp (25)] to minimize
the loss, and Rt is recalculated only as necessary (in practice,
every 50 optimization steps [SI Appendix ], which we collectively
refer to as a single “iteration”). The entire process (18 iterations)
takes roughly 3 minutes on a Tesla P100 GPU.

As a first example, we use Eq. 5 to target energy barriers of
3kBT and 5kBT between two of the stable N = 7 particle clus-
ters. Fig. 3B shows the energy along the reaction coordinate (i.e.,
the steepest descent path that connects the two metastable states
via the transition state), after various iterations of the above pro-
cedure. The final energy differences of ∆Eit = 2.998kBT and
∆Ejt = 5.001kBT are both within 0.1% of their target and can be
further refined by continuing the optimization procedure. Fig. 4A
shows the results of 49 distinct target combinations and demon-
strates that similar accuracy can be obtained over a wide range
of energies.

The connection between the energy barriers and the resulting
transition rates is predicted using the Kramers approximation,
which is validated via MD simulations where we extract the rates
directly (Fig. 3C and SI Appendix). Fig. 4B shows both rates
(kKramers and kMD) as a function of the target energy barrier.
While the validation agrees well with the Kramers prediction,
the prefactor ν is not constant, underscoring the difficulty of tar-
geting energy barriers as a proxy for transition rates without a
quantitative model for ν.

An alternative is to target kKramers directly, which we do using
the rate-based loss function (Eq. 6). As shown in Fig. 4C, we
obtain a typical error of 0.2% after the optimization. As before,
kMD≈ kKramers, and Fig. 4D shows that the full dynamics of the
MD simulations agree extremely well with the target dynamics.
Thus, we have succeeded in quantitatively designing the transi-
tion kinetics of colloidal-like clusters and can do so accurately
over a wide range of rates. By optimizing over experimentally

relevant parameters, these results give a direct prediction that
can be tested in clusters of DNA-coated colloids.

Simultaneous Training of Multiple Transitions. In the above results,
transition kinetics are designed while simultaneously impos-
ing specific structural constraints. While most self-assembly
approaches focus on obtaining a specific structure, we design
for both structure and kinetics simultaneously. Indeed, we have
designed for two kinetic features, namely the forward energy
barrier/rate and the backward energy barrier/rate. Is it possi-
ble to take this further and simultaneously specify many kinetic
features? Since particles are distinguishable, permutations

A

C

B

D

Fig. 4. Training energy barriers and transition rates. (A) After 18 iterations
of our procedure, the energy barrier ∆E is trained to within 0.2% of the
target barrier ∆E*. Shown is the error [error(∆E)≡ (∆E−∆E*)/∆E*] as
a function of the target. (B) The transition rates measured via MD simula-

tion (kMD; black data) are not exactly proportional to e−β∆E* (the dashed
line has a slope of −β), indicating that the prefactor ν in Eq. 3 is not con-
stant. However, this prefactor is captured reasonably well by the Kramers
approximation (kKramers; blue data). (C) After 18 iterations of training on
the Kramers rate kKramers, we obtain an accuracy within 0.2% of the target
rate k*. (D) The rates measured via MD simulation kMD agree very well with
the target rate k* (the solid line corresponds to kMD = k*). Thus, we are
able to accurately and quantitatively design the transition kinetics of the
seven-particle clusters we consider.
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represent distinct states, and thus, there are many thousands of
possible transitions in our seven-particle clusters. What deter-
mines which subsets of transitions can be simultaneously and
independently controlled?

To address this question, we develop an analogy to network
rigidity. Each kinetic feature we would like to impose appears
as a constraint in the loss function. If we want to impose x
kinetic features, then we attempt to minimize a loss function
analogous to Eq. 5 with x terms of the form (∆E −∆E∗)2.*
This constraint satisfaction problem has a strong analogy to
network rigidity (40), where physical springs constrain the rel-
ative positions of nodes through an interaction proportional to
(r − r0)2, with r as the distance between particles and r0 as the
rest length of the spring. When attempting to place a spring,
we can look to the eigenvalues of the Hessian matrix of the
total energy to determine whether the new constraint can be
satisfied. Each “zero mode” (eigenvector of the Hessian with
zero eigenvalue) represents a degree of freedom that can be
adjusted slightly while maintaining all of the constraints. The
relevant question is whether the new constraint can be satis-
fied with only these free degrees of freedom. If this is the case,
then imposing the constraint causes the system to lose a zero
mode. However, if the additional constraint cannot be satis-
fied simultaneously with the other constraints, then the number
of zero modes remains the same, and the constraint is called
“redundant.” Thus, if the number of nonzero modes equals the
number of constraints, than all of the constraints can be satisfied
simultaneously.

We employ this same approach in our system to determine if
a set of constraints (desired kinetic features) can be simultane-
ously satisfied by a given set of variables (the 21 binding energies
Bαβ). To proceed with a given set of desired kinetic features,
we start with a random initial set of binding energies and write
down a temporary loss function where the targets are equal to
the current energy barriers. This is analogous to placing a spring
between two nodes such that the spring’s rest length is equal to
the separation between the nodes. It also guarantees that the
Hessian matrix d2L

dBαβdBα′β′
is positive semidefinite and that the

zero modes correspond to unconstrained degrees of freedom.
We employ AD to calculate the Hessian matrix, which we then
diagonalize and count the number of zero and nonzero modes. If
the number of nonzero modes equals the number of constraints,
then we predict that the desired set of kinetic features can be
simultaneously obtained.

To test this prediction, we have picked an initial structure and
nine adjacent structures, with the intention to simultaneously
specify the energy barriers of various subsets of the nine for-
ward and nine backward transitions. As a first example, we pick a
set of 10 transitions (5 forward and 5 backward) where the Hes-
sian has 10 nonzero modes, meaning our theory predicts that our
optimization should be successful. This is confirmed in Fig. 5A,
which shows the energy along the five transition pathways after
simultaneously optimizing for all 10 barriers. The legend shows
the target energy barriers, ∆E∗ij and ∆E∗ji , for both the forward
and backward transitions, respectively. Each observed barrier is
within 0.3% of the respective target and becomes more accurate
with additional training using smaller training rates.

This result is generalized in Fig. 5 B and C, where we show the
loss function Lfinal after optimization for all 511 subsets of the
nine transition pathways. Cases where we predict that the kinetic
features can be simultaneously obtained (i.e., that Lfinal→ 0) are
shown in green, while cases where we predict that the kinetic
features cannot be simultaneously obtained are shown in blue.

*Or analogous to Eq. 6 with x terms of the form (k− k*)2. For simplicity going forward,
we will focus on imposing kinetic features via energy barriers.

A

B

C

Fig. 5. (A) Energy (in kBT) along the steepest descent paths connecting
a single starting structure with five adjacent structures, obtained through
the DNEB method (Fig. 3 and SI Appendix). These results are after the
simultaneous optimization of all 10 energy barriers (target energy barri-
ers [in kBT] are shown in the legend). The observed energy barriers are
within 0.3% of their targets. (B) The loss function after attempting to simul-
taneously control the dynamics of multiple transitions, as a function of
the number of transitions. Due to the form of the loss function (Eq. 5),
simultaneous control is successful when Lfinal→ 0. In practice, when we
obtain Lfinal < 10−2, this can be further reduced by additional optimiza-
tion with smaller learning rates, indicating that the transition dynamics
can indeed be controlled to a desired precision. The data are colored
according to the Hessian-based prediction discussed in the text: green
(blue) data correspond to cases where we predicted that simultaneous con-
trol could be (could not be) obtained. (C) Histogram of Lfinal for all data
shown in B.

While our predictions are not perfect, we find that they are
correct roughly 97% of the time.

A key difference between our system and network rigidity is
that we are trying to predict a highly nonlocal feature of the
function space, namely whether or not a loss function can be min-
imized to zero. Conversely, rigidity in elastic networks is a local
property of the energy landscape. We extrapolate from the local
curvature to predict highly nonlocal behavior, without proper
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justification. The fact that this nevertheless works quite well indi-
cates that there is indeed some persistent internal structure in the
function space we are considering, despite its considerable com-
plexity. We leave a more in-depth examination of this structure
to future studies.

Discussion
Rather than being limited to structural motifs, our results expand
the design space of colloids with specific interactions to include
complex kinetics. Understanding the connection between inter-
actions and emergent dynamical properties is hugely important
in biological physics, materials science, and nonequilibrium sta-
tistical mechanics. Moreover, achieving in synthetic materials the
same level of complexity and functionality as found in biology
requires detailed control over kinetic features.

We demonstrate quantitative control over kinetic features
in two self-assembly systems. In the classic problem of assem-
bling a honeycomb lattice using monotonic, spherically symmet-
ric particles, we achieve nontrivial control over lattice assem-
bly rates. Understanding and controlling crystallization kinetics
is critical to the design of many real materials and is inti-
mately related to the statistics of defects. Furthermore, since
a honeycomb crystal is a diatomic lattice where neighboring
particles have different orientational order, assembling a hon-
eycomb lattice out of identical particles is a notoriously diffi-
cult problem. Our ability not only to assemble such a lattice
but to control its assembly rate relative to a triangular lat-
tice reveals an essential connection between assembly dynamics
and particle interactions that we are able to exploit for kinetic
design.

Second, by considering small clusters of colloidal-like particles
with specific interactions, we discover that transition kinetics are
far more designable than was previously thought. Since spher-
ically symmetric particles provide a foundational understand-
ing not only in self-assembly but in fields throughout physics,
our results suggest the same potential for designing transition
dynamics in numerous other systems.

Moreover, the methodology we present is applicable beyond
the study of colloidal kinetics. At its core, this method directly
extracts the effect of experimental or model parameters on an
emergent property, such as the kinetic rates that we focus on.
It does so by measuring the derivative of the emergent prop-
erty with respect to the underlying parameters. Unlike finite
difference approaches to taking derivatives, these calculations

are both efficient and exact, enabling, for example, the Hes-
sian calculation that is essential to our analysis in Simultaneous
Training of Multiple Transitions. We have shown that despite the
stochasticity inherent to the thermal systems we consider, these
derivatives are predictive. In other words, the validity of the
linear regime accessed by the gradient calculation is not over-
whelmed by stochastic noise. Thus, we can cut through the highly
complex dependence of emergent dynamical features on model
parameters (such as interaction energies, size distributions, tem-
perature and pressure schedules, or even particle shapes) and
use this dependence to control behavior.

Thus, we have shown that gradient computations over statis-
tical physics calculations using AD are possible, efficient, and
sufficiently well behaved for optimization of kinetic features.
This approach is complimentary to other inverse approaches,
such as “on-the-fly” optimization methods (41) where iterative
simulation results are used to update parameter values at each
step in order to suppress competitor structures and promote the
desired structure. However, unlike for structural features, it is
difficult to intuit the connection between interactions and kinet-
ics. By revealing this connection, the differentiable statistical
physics models presented here provide a framework for under-
standing emergent behavior. Indeed, our work merely scratches
the surface of what can be achieved using the principles of kinetic
design. This approach scales favorably with the number of input
parameters, enabling the design of increasingly complex phe-
nomena. We envision engineering materials with emergent prop-
erties, exploring the vast search space of biomimetic function and
manipulating entire phase diagrams.

Materials and Methods
MD simulations and AD calculations are performed using a fully differen-
tiable MD package, called JAX MD (22), that has recently been developed
by two of us and has hardware acceleration and ensemble vectorization
built in. SI Appendix has more information on our methods and procedures.

Data Availability. All study data are included in the article and/or SI
Appendix.
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